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Preface to the online edition

For a long time, I wanted to make a game that (i) used the rules of quantum
mechanics, and (ii) was a good game to teach them. For a long time, I also re-
frained from trying because how could I do anything that in some way was not
already done by J. Eisert [EWL99] or W. Dür [LD19]? Then, somehow I felt that
there was still room for something that would be useful for teaching quantum
mechanics at high school level or to the general public that would start from
the conceptual building blocks of quantum mechanics. So I made QTris and
started using it to explain quantum mechanics to a lay audience. I thought it
was useful because it refrained from useless metaphors: quantum mechanics
had to be understood through the understanding of its rules and of its conse-
quences, and because the consequences are those that would give meaning to
the most counter-intuitive parts of the theory, like coherent superpositions or
entanglement.

This book contains all the game rules. They are interspersed with leaflets of
quantum mechanics. They are simple explanations that connect the game rules to
quantum mechanics at the level of a popular science book. The text also often
makes reference to other materials that my group and I use to teach in schools.
Those parts are still in a testing phase, and are not included here. However, I
decided not to remove those references in order to show the scope of the full
project.

The online downloadable version of the QTris game is a way to share this
set of rules with the community of physicists interested in quantum mechanics
research, its teaching, and its playing. This material has been copyrighted but I
am happy if people use it. I am also very grateful if anyone would contact me
to warn me about mistakes, or simply wants to discuss the game mechanics
and possible improvements.

If you decide to use this game for fun or didactical purposes, please credit
the authors and point to the webpage where you can find its up-to-date version
and more materials at www.quantumphysics.fun/qtris.

AH
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Chapter 1

Introduction

Welcome to QTris, a board game aimed at learning the fundamental concepts
of quantum mechanics (QM) in a rigorous way!

1.1 How to use this book

This book constitutes the first part of a larger and more ambitious project aimed
at teaching quantum mechanics through gaming. The first part of the project,
that is, the material you are reading now, contains the game rules of QTris. The
second part, which will be distributed in other ways, contains a rigorous ex-
planation of the formal structure of quantum mechanics that is aimed at high-
school level. Some of the text in this first part will sometimes make reference
to the second part, but those references are not necessary to learn how to play
the game and get a first grasp of quantum mechanics.

1.2 Game philosophy

Why a board game to learn quantum mechanics? The simple answer could
be that by gaming one can entice young students to a difficult discipline like
quantum mechanics and make it entertaining. Now, we are not sure we sub-
scribe to this pedagogical view. First, because there is something dishonest in
the travesty of something complicated as something simple. Second, for like
every child knows, games1 are a very serious and difficult thing. As such, a
game is the right tool to learn something serious and difficult like quantum
mechanics. And thirdly, because the goal of studying should not be to learn
more things, but to learn how to give full attention. Diversions are a way to,
indeed, divert it.

One of the difficulties in teaching or learning quantum mechanics lies in
the fact that its rules are clear as long as they are abstract. When one then

1that others call Mathematics.
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tries to connect the abstract theory to something concrete or to common sense,
things get murky. The request of concreteness should not be dismissed. On the
one hand, this is the request of understanding how the abstract rules work and
connecting them to the facts of experience. In trying to understand Nature, one
should hold this request in the highest regard. On the other hand, the request
for concreteness is more often tainted with a sentiment that is in fact detrimen-
tal in our relationship with the understanding of Nature, that is, pure hostility
towards abstraction — according to the spirit of the times. We believe that the
hostility towards abstraction is part of the more general hostility towards at-
tention. Moreover, since abstraction is difficult, it will always result in poorer
evaluations in a school context. Apparently, the goal of modern education is
to find a way to show in a table or a graph an improvement in some kind of
scores. For instance, one can show that children understand and can use the
notion of sticks better than that of segments, so better do away with segments
and teach them un-math instead of mathematics.

Of course, our point of view is that one of the aims of Education is indeed
exactly that of teaching how to find a structure in the facts of the world, in
other words, to teach how to abstract.

The reason why the rules of QM become ambiguous when one tries to make
them concrete — or, even worse, to visualize them — is that QM is telling us
that Nature behaves fundamentally in a way that is quite far from our intu-
itions and our philosophical prejudices. To be sure, such intuition and such
prejudices are there for a reason, the reason being that in most of our interac-
tions with the external world, they seem to give a good account of it: ostensibly
there are objects, ostensibly they have an effect on each other, ostensibly they
are there regardless of our sense-perception of them. However, as our technical
capabilities allowed us to investigate microscopical phenomena, many of the
notions we were used to just started to crumble. Trying to understand QM in
terms of our usual mental categories gets then tied up in interpretational ques-
tions in which many generations of physicists and philosophers of QM got lost.
These questions are so complicated that some believe they are intrinsically un-
solvable. The vast majority of quantum physicists, though, got to terms with
just using the abstract rules, and, for the most part, understanding how they
connect to the experiments they can carry on. Thanks to the correct application
of the abstract rules to the concrete experimental situations they are able to at-
tain an incredible explicative and predictive power from QM: it has been said
many times that there is no theory of Physics that is more successful than QM.

Of course, it takes a lot of experience and practice to be able to use quantum
mechanics in a correct way. Even seasoned practitioners and researchers may
experience a hard time. At some point, with experience, scientists gain some
level of confidence about how to inquire what quantum mechanics is going to
tell them about some given physical situation. As a matter of fact, at that point
they tend to resort to the abstract rules. They know they work, they use them in
an abstract way, and perhaps only at the very end of their chain of calculations
they will try to interpret their results in some physical and perhaps intuitive
way.
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In QM, these problems seem so hard that there is no wonder that this subject
is not really taught at high school if not at a very superficial level. The student
is supposed to learn the atomic structure or the whole story about quantization
of energy or the Schrödinger equation. These are all things that students cannot
really grasp because they involve higher mathematical tools like partial differ-
ential equations, usage of metaphors like “probability waves”, together with a
very large amount of physics that is thereby involved. This approach does not
lead very far. It does teach some verbal habits like being able to answer some
questions like «What is the atom structure like?» by saying «Electrons possess
discrete values for the energy» without really understanding how and why. All
this knowledge does not touch any of the essential aspects of QM. It is some
sort of zoology about the behavior of elementary particles.

To this critique, the typical answer of the community of physics education
is that young students need to be exposed to certain ideas, and that only later on
they will be able to understand things at a deeper level during their university
studies.

It may as well be that these people are right. That there is not a way to make
the essential aspects of QM accessible at high-school level. Were this be the
case, this little tentative will fail in its most ambitious goal. And yet, something
tells us that it is exactly the young students that can get the greatest payoff from
an abstract exposition. The reason is that the young love to play games, and
gaming, in its very nature, is abstract. The rules of a game, say, chess, or any
other board game, are abstract. The players know very well that the concrete
interpretation of the tiles and the pieces on the game board is immaterial, that
what really counts is how the pieces move, and their mutual relationship on the
game board given by the rules. All that counts is how to devise a strategy that,
within those rules, leads to winning. Whether the piece resembling a unicorn is
really a unicorn is not important at all. The unicorn-shape is a make-believe, a
myth, that players know very well should never be taken into account in their
strategy. If someone asked, typically an adult, a question regarding the unicorn
and whether a unicorn should not rather do something else on the board, this
one would be told that they have not understood the game. Kids, on the other
hand, who take play seriously, know the function of the pieces very well. Also
some adults know that, when they get some relief from the immediate material
needs of their life. The human being is a homo ludens and play is an essential
condition for the formation of culture.

In making contact with experience, QTris and the formal rules of QM show
that at the very least these give a correct description of the behavior of certain
instruments when they interact with a given class of physical systems, typi-
cally microscopic. This does not mean that we are proposing an instrumental-
ist point of view. All we want to say is that — although things might be much
more complicated than we know — experience revealed to us a collection of
facts and that these facts can be organized very well within a the set of the
abstract rules of QM.
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1.3 How to use this material

The material of this book can be used in a multitude of ways. It is fundamen-
tally divided into two parts. In the first part, that is, the material presented
here, you learn the game. In the second part, which is not included here, you
learn some mathematical tools and the formal structure of quantum mechanics
rigorously. By the end of the second part, you will have understood that play-
ing QTris is effectively performing calculations in quantum mechanics, and
that doing calculations in quantum mechanics corresponds to playing a cer-
tain type of game in QTris. In its entirety, this material can cover an entire
course of quantum mechanics at high school or pre-university level, which can
cover up to fifty hours of lessons, including gameplay and exercises. Part of
these hours consists of teaching mathematical concepts that are already part of
the curriculum of — at a minimum — the scientific high school. The material is
thus organized by parts and number of teaching hours required to administer
them.

1. Part I: The rules of the game (this book)

• Basic rules of the game to be able to play (Chapter 2): ≤ 2 hours
• Basic quantum mechanics within the game (Chapter 2): 3 hours
• Advanced gameplay (Chapter 3): 2 hours
• More advanced notions of quantum mechanics (Chapter 3): 3 hours

In particular, the concepts of quantum mechanics that appear in the text
are presented in the following yellow sheets.

QM

Leaflets of quantum mechanics. The yellow leaflets with the
symbol “QM” like this one explain how some game compo-
nent or rule should be understood in QM. It is not necessary
to read them to learn how to play.

2. Part II: Quantum mechanics (not included here)

• Matrices: 4 hours
• Probability: 4 hours
• Complex numbers: 6 hours
• Dirac notation: 6 hours
• History of quantum mechanics: 2 hours
• Postulates: 4 hours
• Pure and mixed states: 2 hours
• Operations: 3 hours
• Entanglement: 3 hours
• Quantum evolutions: 3 hours
• Experiments and algorithms: 4 hours

8



1.3.1 Learning objectives

The learning objectives of this material are two. First, by learning how to play
the game, one learns the fundamental formal structure of quantum mechanics,
the notions of state, operations and measurement, as well as quantum mechan-
ics as a probabilistic theory, the difference between quantum states and classi-
cal probability distributions, entanglement and its differences with respect to
classical correlations. The reaching of such objectives allows a comprehension
of the fundamental concepts of quantum mechanics, which is as free of ambi-
guities and metaphysical prejudices as possible.

By utilizing the second part of the book (not included here), we aim at
teaching in a deeper way the formal apparatus of quantum mechanics. This
will give the student the ability to perform calculations, predictions and solve
problems.

The mathematics utilized is at high-school level. Sections or exercises marked
by * are more advanced and can be skipped without compromising the under-
standing of later material.

§

Mathematical examples. In the second part of this book (not in-
cluded here), we will develop the formal structure of quantum me-
chanics. This is expressed in terms of mathematical tools such as
matrices, complex numbers, and probabilities. Many mathemati-
cal examples are inserted into boxes like this one.

Exercise.

This kind of boxes denotes exercises that the reader is invited to solve.

1.4 Game structure

!

The structure of this game is made of three phases that repro-
duce the structure of quantum mechanics: preparation, in which
the game board is set together with the tiles and cards. The second
phase, called operations, in which the players play cards to change
the disposition of the tiles on the board, and finally the phase of
resolution, in which points are assigned: this phase will always be
called in QTris as the measurement phase.

The objective of the game is the same as tic-tac-toe: to line up three identical
symbols within a grid of nine squares. QTris, however, has several differences
from the usual tic-tac-toe. The game begins by preparing the grid with one tile
per square. At the end, in the measurement phase, after rolling a die each tile
will have a certain probability of becoming the tile that assigns points to one
or another player. In the game phase called operations, players can play cards
to modify the tiles on the board in order to improve their chances of winning
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when assigning points. Surprisingly, the game could end with more tic-tac-toes
simultaneously on the grid!

The differences, however, do not stop here. By reading the following pages,
you will learn all the rules of the game, and, together with these, the peculiar-
ities of quantum mechanics. Indeed, we can declare without fear of contra-
diction that there is no fundamental difference between QTris and quantum
mechanics. Everything that is possible in quantum mechanics will also be pos-
sible in QTris.

1.5 The structure of quantum mechanics

As we shall repeat several times, the structure of QTris is the same as of quan-
tum mechanics. It consists of three phases. The first phase is where the game
board is prepared. This consists of applying a certain protocol to determine
what tile to place on each square. The second phase is that of operations, in
which players play cards that change the tiles on the squares. The third phase
is that of measurement, in which the possible outcomes on every square is ran-
dom, but with very precise probabilities given by the rules of QTris. Players
perform operations in order to obtain more favorable probabilities for their
score.

QM

The structure of a quantum experiment. In quantum mechan-
ics, every experiment consists of three phases: preparation, opera-
tions, and measurement. In the preparation phase, it is determined
what the initial state of the system is. This happens through a se-
ries of physical operations, for example, by passing silver atoms
at a certain temperature through a collimation apparatus which
sends them into a narrow beam. The second phase (operations)
consists in the temporal evolution of the system because of the in-
teractions in the system or operations that the experimenter or the
environment perform on the system. Finally, the phase of mea-
surement reveals in the lab the effect of an experiment. In this
phase, a measuring apparatus is in contact with the system and
following this interaction it records a result of the measurement,
see Fig.1.1. For example, if we perform an experiment with pho-
tons fired at a screen with two slits, the preparation consists of the
way the photons are shot, the operations consist in the interaction
of the photons with the screen and the slits, and the measurement
consists in seeing in which point the photons that went through
the slits hit the revealing plate.
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Figure 1.1: The structure of a quantum experiment. The first layer with all the
symbols |0⟩ prepares the initial state of the system in all the qubits being 0. The
second box containing U andNp shows the phase of operations where the state
is manipulated, and the last box shows the detail of the measurement phase.
From [OLHL22].

QM

Probabilities in quantum mechanics. In a quantum experiment,
which of the possible outcomes does indeed occur is random. The
probabilities of such events, however, can be calculated exactly.
The whole point of the theory of QM is to give a tool to compute
the probabilities of getting certain results in certain experiments.
An experimenter who has access to a sufficient number of oper-
ations between preparation and measurement may change these
probabilities in the desired way, and this is at the basis of applica-
tions like quantum technologies and quantum computing.
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Chapter 2

The Game

2.1 Number of players

The game is suitable for 2 − 9 players aged 12 and up. In the basic version,
the two players will be referred to as Alice and Bob. Alice and Bob can also be
played by a team that decides the operations together. In advanced versions, a
third player is called Eve. Alice and Bob can cooperate against Eve or everyone
can play against everyone. In the case of three teams (Alice, Bob, Eve) of three
people each, the number of 9 players is reached.

2.2 Game components

The QTris game is made up of the following components:

• The game grid, divided into nine squares.

• Circular tiles: white #, black  , and black-and-white G#,H#.

• Yellow triangular tiles , , , .

• Quadrangular tiles H ,
U

• Two ten-sided dice (d10): one for tens and one for units.

• One deck of cards, corresponding to quantum operations and denoted
by the symbols

I,X, Y, Z,H,U,CX

2.2.1 Game grid

The game board, shown in Fig. 2.1, is a board made up of nine numbered
squares. On each square you can place a game tile. The cards are played on

12



Figure 2.1: Game grid. Every square represents a quantum system called qubit.

the squares and transform the game tiles into other game tiles, according to the
rules described in Sec. 2.3.

QM

Squares as quantum systems. As a first explanation of how quan-
tum mechanics is represented in QTris, let us talk about the game
board. The board represents a composite quantum system! In fact,
every square represents one quantum system, called qubit, and
thus the entire board represents a quantum system composed of
nine subsystems, or nine single qubits. Any quantum system can
be described by a system made of a suitable number of qubits.

In QTris, the core game mechanics operates primarily at the level of one or
two qubits. This means that the available actions can be applied either to a
single square or to a pair of squares. As we know, however, the game board
has nine qubits.

2.2.2 Game tiles

The game consists of tiles in three distinct shapes: circular, triangular, and
quadrangular. Each of them represents a quantum state, on one or more qubits.

13



QM

Tiles as quantum states. In quantum mechanics, every physical
system can be described by a construct called state. The state of the
system allows to predict the probabilities for the outcomes of ev-
ery possible experiment on that physical system. You got it right:
probabilities. Nature only gives out probabilities for what may hap-
pen. However, such probabilities are not arbitrary, but follow very
precise physical laws. These are the laws of quantum mechanics.
In QTris, every configuration of tiles on the game board represents
the state of a quantum system of nine qubits. A tile on a single
square of the grid is a state on one qubit.

Circular tiles

The simplest tiles in the game of QTris are the circular ones. Circular tiles come
in three variants: white #, black  , and black-and-white G#,H#. Every time one
places a single tile in a square, the corresponding state is called pure.

QM

Pure states. In quantum mechanics, every physical system is
initially prepared in a certain state following an experimental
protocol. If this protocol is both perfectly determined and exe-
cuted, then the physical system is effectively prepared in a well-
determined state said pure state (aka kitten). These are states that
contain the maximum possible information about the system. In
QTris, a circular tile on a square corresponds to a pure state of a
single qubit.

So, in QTris, whenever you place a single circular tile on a square, you are
choosing a pure quantum state for that qubit. You are saying: «This is what I
know about this tiny piece of the system», and this knowledge is complete.

Circular tiles in QTris possess two fundamental properties: color and orien-
tation. States #, have a well-defined color, white or black, while black-and-
white states G#,H# have a well-defined orientation: they are oriented to the left
or to the right, depending on the position of the black and white regions.

!

The orientation of circular tiles in QTris is very important, but not
for all of them. The solid tiles #, can be rotated as one whishes,
and they look exactly the same. For them, orientation is unimpor-
tant; a mathematician would say that they enjoy a circular sym-
metry. On the other hand, black-and-white tiles can be oriented
with the black part on the left or right G#,H# and represent differ-
ent states (and physical properties). It is therefore very important
to think about how tiles are oriented, to understand in the correct
way how the operation cards can be played or the effect of a mea-
surement on such states.
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Figure 2.2: Entangled states. Each entangled state is a state of two squares. A
triangular tile is placed on both squares of an entangled state. The triangular
tiles of an entangled state must be of the same color.

QM

Schrödinger’s kittens. The black and white tiles G#,H# represent
what are also referred to as Schrödinger’s kittens. These cats do not
have a well-determined color until one observes it. One can say
that the color is that property that is summoned by the observa-
tion of color. However, once the color is observed — say, black —
then it is determined as black and every further observation will
show us that it is indeed black.a One can say that the G#,H# kittens
have a probability 1/2 of being observed as white or black, while
the #, tiles have a probability 1 of being white or black, respec-
tively. However, these kittens are not just probabilities: there is
something more to it which is very important and that we will
understand as we proceed with the game. If at the end of this
rulebook and after having played a few games one will have un-
derstood Schrödinger’s kittens, then one can say to have actually
understood quite a bit about quantum mechanics!

aIn the original example, Schrödinger talked about the property of being
alive/dead instead of the color being white/black, which was a bit more dramatic.

Triangular tiles: entangled quantum states

In the game, it is possible to correlate some circular tiles with some other cir-
cular tiles by applying on them the CX card, whose action is further clarified
in Sec. 2.3.2. Triangular tiles are used to represent the entangled tiles, and the
possible combinations of triangular tiles are shown in Fig. 2.2. The squares of
an entangled state do not necessarily have to be adjacent: one can apply a card
that creates entanglement on two distant squares of the game board. Entangled
tiles are deeply connected, so much so that if you check one, you will instantly
learn something about the other. When the triangles are oriented in the same
verse, the two tiles are bound to give the same result upon measurement (cor-
relation), while when they have opposite orientations, they are bound to yield
opposite measurement outcomes (anti-correlation). Some of the triangles also
feature a minus symbol (−), which represents the so-called phase of the entan-
gled state. The concepts of correlation and phase are clarified in more detail in
in Sec. 2.3.2, Sec. 2.3.3, and in Sec. 3.3, after introducing the action of the CX

operation card, which is responsible for creating entanglement, and exploring
how entangled states behave under measurement.
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Figure 2.3: Single square tiles available in QTris. Each single-square tile cor-
responds to a game tile in circular shape. A circular tile can be decorated with a
pink square U tile by playing the respective operation card. The way in which
such states can be created within the game is described in the advanced rule-
book, in Sec. 3.2

.

Quadrangular tiles: more states in quantum mechanics

It is possible to decorate circular tiles with a quadrangular tile U underneath,
after using the respective U card. By “decorate”, we refer to placing the quad-
rangular tile under the circular tile present on the square where we use the re-
spective card, as shown in Fig. 2.3. Details on the effect of the operation cards
are presented in Sec. 2.3.2. Decorated one-qubit tiles are part of the advanced
version of the game and are illustrated in Sec. 3.2. Triangular tiles can also
be decorated with quadrangular tiles H ,

U . The complete list of all possible
representations of entangled states present in the advanced version of QTris is
shown in Fig. 3.4 and Fig. 3.5.

2.2.3 Operation cards

The game includes a deck of fifty-two (52) operation cards. Each operation
card represents an operation that can be performed on a state within the game.
Essentially, the operation cards allow the player to act on a state to modify it.
Thus, through the operation cards, the player can alter the arrangement of tiles
on the game grid.

16



QM

Quantum operations. In quantum mechanics, the states of a sys-
tem may change with time. This change is called evolution and it
is called unitary or non-unitary depending on the laws that describe
it. An evolution is enforced by a quantum operation; thus, a quan-
tum operation has the effect of making the state evolve. In QTris,
all of the operation cards describe the laws of the unitary oper-
ations on a quantum system. Unitary evolutions are reversible:
they preserve the total probability and describe isolated quantum
systems evolving without external interference. Non-unitary evo-
lutions, on the other hand, arise when the system interacts with an
environment or undergoes a measurement.

The operation cards available to players in the basic version of QTris are:

I,X, Y, Z,H,CX

2.3 Game rules

In the following subsections we describe in detail the three phases of the game.

2.3.1 Game preparation

The preparation phase begins with randomly arranging the tiles on the game
board, so that each space is occupied by a single tile.

!
During preparation, only valid states within the game can be
placed on the game board. Therefore, it is not possible to place
only one of the two tiles that make up any entangled state.

In the base version, the tiles to choose from and place initially on the game
board are #, ,G#,H#. We then proceed to build the deck of operation cards.
In this rulebook, four possible preparations of the deck of operation cards are
provided, which correspond to four different levels of difficulty of the game.
The deck builds are:

Card Base Advanced

I 5 5

X 10 10

Y 5 5

Z 10 10

H 12 12

CX 10 10

U 0 9
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Figure 2.4: Game preparation. Example of a game board configured with both
entangled states and decorated tiles H

,
U

.

The deck of operation cards is shuffled and four (4) cards are dealt to each
player. The players must now decide on their turns. To do so, both players
must roll a ten-sided die (d10). The player who rolls the highest value on the
die will play first, and will choose between the white tile symbol or the black
tile symbol as their game symbol. The goal of the game is to make one (or
more) tic-tac-toe (or qtris) using the chosen tile.

!

The only valid qtris are those made up of undecorated, single-
colored tiles. For example, in the following grid there are three
qtris for the black. 

 # #

  #

   


The players, now with four (4) operation cards in their hand, may decide

to discard any number of operation cards from their hand and draw the same
number from the top of the operation card deck. This game mechanic is called
mulligan, and it is useful for ensuring that at the beginning of the game you
have the operation cards in your hand that are appropriate for the game strat-
egy you want to adopt.

In Fig. 2.4, a game setup involving both basic and advanced tiles is repre-
sented. On the game board, we can observe: a white tile # on squares nn. 2, 9;
a black tile decorated with a pink U tile

U

on square n. 3; a black-and-white
tile oriented to the right H# on square n. 8; a black tile  on squares nn. 4, 7; a
black-and-white tile oriented to the left G# on square n. 5. Squares n. 1 and n. 6
are occupied by entangled tiles. The triangular tile on square n. 1 is decorated
with a red H tile H .
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Figure 2.5: Square map of single-square operations X,Y, Z,H and of mea-
surement probabilities. The numbers in the parentheses (x, y) next to the
symbols #, ,G#,H# represent the probabilities of obtaining # and  respec-
tively, after performing a measurement, as explained in Sec. 2.3.3.

2.3.2 Operations phase

The operations phase starts immediately after the completion of the prepara-
tion phase, and it is organized in game turns. It consists of playing the opera-
tion cards, which allow the players to change the state of the system.

The operations phase consists of ten (10) game turns, five (5) for each player.
In each game turn, the player who is playing must:

1. Pick two (2) operation cards from the operation card deck.

2. Play two (2) operation cards from their hand.

The operations phase ends when both players have played five (5) turns,
one each starting with the player who begins the game.

Let us now illustrate the effects of all the cards listed above.

Single-square operation cards

• The I card has no effect and is used to pass the turn.

• The operation cards X,Y, Z,H act on a single square, and the rules that
determine their action are graphically represented in the square map of
Fig. 2.5. In particular, the X card acts as a change color, the Z card as a
change orientation and the Y card both as a change color and as a change
orientation, depending on the state on which we apply it. The H card acts
as a change between color and orientation.

19



Exercise 2.3.1: Card play mechanics.

Show how to transform the game board prepared as:
G# # #

  #

 H#  

 into:


 # #

  #

   


by playing two H cards and one Z card.
Solution.— We start by playing an H card first, such that H# H−→  , and
then we apply a Z card on G#, such that G# Z−→ H#. Finally, we play an H

card again, such that H# H−→  :
G# # #

  #

   

 H−→
Z


H# # #

  #

   

 H−→


 # #

  #

   


Notice that the order of the operations, as long as one plays the H and
Z cards in sequence, does not matter. That is, the proposed solution is
equivalent to the following: H# Z−→ G# H−→  first and H# H−→  second.

QM

Superposition. The kitten states G#,H# are sometimes called super-
position states. We have seen that they both give a uniform prob-
ability 1/2 of resulting in either a #, tile when measured. Does
this mean G#,H# are identical for the game purposes? Why would
then one perform the G# Z−→ H# operation? If there were no H card,
the two G#,H# tiles would be effectively equivalent and nothing in
the game would make one preferable over the other. However, the
H card can turn a # tile into a G# tile! Thus, if a player is playing
White, their chances of getting a# tile in that square increase from
1/2 to 1! Conversely, fromH#, one can first use the Z card to change
it to G# and then with H achieve the desired # tile. Notice that one
would not be able to do the same thing with a simple probability
distribution, like a bag with mixed #, tiles. These mixed bags
do not transform under the operation H . Physicists call super-
positions those states that can be changed into one another with
certainty. This concept will be re-examined in greater depth along
the whole book.
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Two-squares operation cards

The only operation card that involves two game tiles is CX . It, in fact, acts
on two squares and can transform pairs of single-square states into entangled
states, and vice versa.

Figure 2.6: Cubic map of double-square operations X,Y, Z,CX . The num-
bers in the parentheses (x, y, w, z), next to the symbols G##,G# ,H# ,H## and

, , , , represent the probabilities of obtaining ##,# , #,  
respectively, after performing a measurement, as explained in Sec. 2.3.3.

In Fig. 2.6 we see the action of the new CX card that from pairs of states (on
the upper face of the cube) represented by {G##,G# ,H# ,H##}, map to entan-
gled states (on the lower face of the cube), represented by { , , , }.

Note that the dashed rectangular box beneath the states on the top face of
the cube is clearly divided by a dashed line, whereas the one beneath the states
on the bottom face is not. This representation highlights the difference between
pure separable states and pure entangled states of two qubits.

The CX card can also be used on other combinations of circular tiles, and
may involve more than two squares. This advanced use is investigated in
[DeS25].
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!

When applying a CX card on a two-qubit state, the resulting state
may differ depending on which of the two qubits — first or second
from 1 to 9 on the game board — is designated as control qubit.
Let us consider the state G## and let us indicate with a letter C the
control qubit. Then:

G#
C
# CX−−→

G##
C CX−−→ G##

that is, when we apply CX on the two qubit stateG##, if we choose
as control qubit the first one, we obtain an entangled state; if we
choose as control qubit the second one, the CX card acts as the I
card.
If the starting state is an entangled state, applying CX does not
make a difference in terms of properties of the resulting state, in
the sense that:

C
CX−−→ G##

C
CX−−→ #G#

The two states G## and #G# differ only in the reversed positions
of the tiles. In a game scenario, one might be more advantageous
than the other depending on the strategy used to maximize the
chances of winning. In general, when applying a CX card to an
entangled state, it is not necessary to distinguish between control
qubits: a player simply chooses how to arrange the tiles after the
operation.

The CX card acts:

• As the X card, when the control qubit has a  tile on it; the other tile
transforms as if X were applied to it.

• As in Fig. 2.6, when the control qubit has a G# or H# or a triangular tile on
it; when applying it on entangled states you can choose the strategy for
positioning the resulting tiles between two squares.
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Exercise 2.3.2: Some CX applications.

Apply the CX card on states , #, H#.
Solution.— We have:

CX−−→ H# or  H#

according to the player’s preference. Furthermore:

 
C
# CX−−→   

 #
C CX−−→  #

 
C
H# CX−−→  H#

 H#
C CX−−→

As an example, consider Fig. 2.7, and imagine the black player has two CX

cards in the last turn of the game. Black will first play the CX card on squares
n. 1 and n. 6, resulting in the central game board of Fig. 2.7 and in an entangled
state on those squares. The black player now plays CX again and by choosing
the control can either go back to the initial configuration or obtain  on square
n. 1 and H# on square n. 6. This is the most advantageous choice, as it allows to
close the operational phase with a qtris in his favor.

Figure 2.7: Example of playing the CX card.

2.3.3 Measurement phase

At the end of the operations phase, the measurement phase begins. At the end
of this phase, all tiles on the board will be either white or black. The procedure
for measuring states on the board is shown in the following box.
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Measurement of the game grid.
Starting from square n. 1, and up to square n. 9:

• Check the type of tile present on the square.

1. If it is a # or  tile, move to the next square.

2. If it is a H# or G# tile, roll a d100 die.
If the result is between 1 and 50, replace the previous tile with
a # tile.
If the result is between 51 and 100, replace the previous tile
with a  tile.
This is the meaning of (1/2, 1/2) in the square map in Fig. 2.5.

3. If it is a triangular tile, an entangled state is about to be mea-
sured.
If a correlated pair is measured, that is, or , roll a
d100 die. If the result is between 1 and 50, replace the pre-
vious tiles with a ##. If the result is between 51 and 100,
replace the previous tiles with a   .
If an anti-correlated pair is measured, that is, or ,
roll a d100 die. If the result is between 1 and 50, replace the
previous tiles with a # . If the result is between 51 and 100,
replace the previous tiles with a  #.
This is the meaning of (1/2, 0, 0, 1/2) and (0, 1/2, 1/2, 0) in
the cubic map in Fig. 2.6.

In quantum mechanics, to indicate that a measurement has been per-
formed on a system, a meter symbol is used. In this rulebook, we will
often use the following notation:

Starting state −−→ Post-measurement state
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Exercise 2.3.3: Measurement.

Consider a game board looking like this at the end of the operations
phase: 

G# H# #

  #

H#


Perform the measurement.
Solution.— In order to measure the tiles on the game board, we roll a
d100 die, starting from the first qubit up to the ninth.

1. On qubit n. 1, we roll a 54 . Then G# −−→  .

2. On qubit n. 2, we roll a 71 . Then H# −−→  .

3. On qubit n. 3, the tile is#. Performing a measurement on the# tile
in the {#, } basis always yields #. We move to the next square.

4. On qubit n. 4, the tile is . Performing a measurement on the tile
in the {#, } basis always yields  . We move to the next square.

5. See point n. 4.

6. See point n. 3.

7. On qubit n. 7, we roll a 99 . Performing a measurment on one
qubit of an entangled state makes the entire state collapse. Then

−−→  #.

8. On qubit n. 8, we roll a 24 . Then G# −−→ #

At the end of the measurement phase, the game board looks like:
  #

  #

 # #


Both players made a qtris!
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QM

Entangled states (1). The behavior of the entangled states we
showed upon measurement is that of strong correlations. This
means that the outcome of one square completely determines the
outcome of the other one. For example, the state means that
both tiles must have the same color, that is, perfect correlation, and
which color it is is random with probability 1/2. So, if the first one
is black, the second one will be black. Perfect anti-correlations, like

, means that if the first is black the second is white and vice
versa. Correlations are not just a quantum mechanical effect: they
are also classical. You can easily see an example of anti-correlation
if you hide in one hand a black tile and in the other a white tile.
The probability of having either a black or white tile in one hand
is 1/2, but once you reveal it, the other one will be determined. So
entangled states are correlated, but as we shall see, there is more
to entanglement than just correlation.

QM

Measurement in quantum mechanics. In quantum mechanics,
the unitary evolution of the state is deterministic. This means that,
by using the rules for unitary operations, one can know exactly
what state the system will be in at the end. However, the measure-
ment does not give deterministic results, but only probabilities. In
QTris, the result of a measurement is established by a roll of the
die.
The method of calculating probabilities that allows to associate to
a state the probabilities of providing certain observations is called
Born rule. In the second part of the book, interested players and
students can learn how to do these calculations as well. Note that
measurement is not a unitary operation. This means that you can-
not go back to the state before measurement: if the state after mea-
surement is # you do not know if it is coming from H# or G#.

2.3.4 Scoring

At the end of the measurement phase, each square of the board will have a
white or black tile. At this point, it is possible to assign scores to the players.
For each qtris made with its game symbol (white or black), the player gets one
(1) point. Victory goes to the player with the highest score. Note that it is
entirely possible that the two players score the same amount of points.
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Exercise 2.3.4: Scoring 1.

Consider a game board looking like this at the end of the operations
phase: 

G# H# #

  #

G#


Perform the measurement and assign scores.
Solution.— In this game, Player 1 plays Black and Player 2 plays White.

1. On qubit n. 1, we roll a 37 . Then G# −−→ #.

2. On qubit n. 2, we roll a 3 . Then H# −−→ #.

3. On qubits nn. 3, 4, 5, 6, we do not roll the die.

4. On qubit n. 7, we roll a 65 . Then −−→   .

5. On qubit n. 8, we roll a 18 . Then G# −−→ #.

At the end of the measurement phase, the game board looks like:
# # #

  #

 #  


Scoring

Player 1 0

Player 2 1
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Exercise 2.3.5: Scoring 2.*

Consider a game board looking like this at the end of the operations
phase: 

G# H#

  

#


Perform the measurement and assign scores.
Solution.— In this game, Player 1 plays White and Player 2 plays Black.

1. On qubit n. 1, we roll a 52 . Then H# −−→  .

2. On qubit n. 2, we roll a 89 . Then G# −−→  .

3. On qubit n. 3, we roll a 16 . Then −−→ # .

4. On qubits nn. 4, 5, 9, we do not roll the die.

5. On qubit n. 6, we roll a 22 . Then −−→ ##.

At the end of the measurement phase, the game board looks like:
   

  #

# # #


Scoring

Player 1 1

Player 2 1
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QM

Entangled states (2). From the previous leaflet of QM and the
understanding of the QTris rules about entangled states, we have
found that entanglement shows correlations. We also mentioned
earlier that there is more to entanglement than just correlations.
Let us consider again an example of classical correlations. Think
of two boxes: one contains two white balls and one contains two
black balls, but you do not know which is which. You open the
box and draw a ball - if it is white (black), you know that both
balls were white (black); you have 50% probability of finding a
white box and 50% probability of finding a black box. Now, think
of the entangled state : if upon measurement on the first qubit
you obtain # ( ), you know that you need to place a # ( ) tile
on the second qubit. What is the core difference between these
two examples? The state can be “undone” by applying the
unitary operation CX , together with H on the first qubit, into the
starting state ##. We do not need to learn the measurement out-
come to return to the unentangled state. The classical box-mixture
cannot be deterministically undone. That is, once you randomly
pick white-box or black-box, there is no way to undo that choice
without learning which box you actually have by extracting a ball:
there is no reversible operation that restores the case two white balls
(two black balls) without first finding out which box you have.

Exercise 2.3.6: Deterministic undoing of entangled states.

Consider quantum states , , . Prove that we can go back to
states # , #,  with some unitary operations.
Solution.— We have:

CX−−→ G# H1−−→ # 
CX−−→ H## H1−−→  #
CX−−→ H# H1−−→   

The subscript 1 indicates that the H card is played on the first qubit,
namely the square with the black-and-white tiles above.
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Summary of phases and game actions.

1. Preparation phase

(a) Fill the entire game grid with valid states.

(b) Distribute four (4) cards to each player.

(c) Establish the order of play (roll of the die).

(d) Mulligan.

2. Operations phase

• Players take turns, following the previously established or-
der of play. The number of turns for each player is five (5).

• Structure of each game turn:

(a) Draw two (2) cards from the operations card deck.
(b) Play two (2) operations cards from the hand.

3. Measurement phase

• Carry out the measurement procedure of the game grid as
reported in the box in Sec. 3.3.1.

4. Scoring phase

• For each qtris made with their game symbol, players receive
one (1) point. The player with the most points wins the game.
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Chapter 3

Advanced Rules

In this chapter, we lay down advanced rules to play QTris. The most impor-
tant of these rules is the one that allows for more interesting probabilities than
those seen so far. The other rules take into account deeper aspects of quantum
mechanics and make the game depth much greater and challenging. We start
by first introducing more quantum mechanical effects that can be explained
within QTris, and then adding new rules in QTris, to deal with even more
quantum mechanics. Some of the rules can be just added to the pre-existing
rules of the previous chapter; in other examples, we introduce game variants,
for instance, starting with different preparations or using a different turn sys-
tem.

!

A general remark about QTris rules is about the usage of cards on
states that are not covered by the card rules. One can ask: «Why
cannot I use the CX card on two qubits, one of each already be-
longs to an entangled pair?» Well, in QM, in principle, every uni-
tary operation can be used on every state if one has the experimental
capabilities for doing so. In practice, many times we can only use
some operations in some circumatances. This is reflected in the
lack of some rules for using some cards on same states in QTris.
However, in principle one could. This corresponds to advancing
the technology. QTris shows how to systematically make up new
rules about how to use old cards on new states or new cards alto-
gether. This very much is the kind of problems that theorists and
experimentalists in quantum information face in their research ac-
tivity.

3.1 More quantum mechanics in QTris*

As we have said before, there is nothing in quantum mechanics that cannot be
performed in QTris. There are virtually infinite additional games that can be
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played on QTris that have a counterpart in quantum mechanics, and quantum
experiments that can be demonstrated on QTris. In this section, we will explore
some of these issues!

The two main facts of quantum mechanics we want to investigate are the
difference between pure and mixed states and what goes on in a measurement.

One question often asked in quantum mechanics is: «What happens to a
quantum state after a measurement?» Well, as we have seen, so far measuring
meant observing whether a tile was white or black. We have seen that when
a tile is measured, the response will be either white or black with a certain
probability (determined by the roll of a die). What happens next? If nothing
else intervenes, the tile remains white or black! This seems to be a very natural
property! Quantum physicists call it collapse and this is the topic of the next
leaflet.

QM

Collapse. Quantum physicists often talk about collapse do de-
scribe what happens to a state after measurement. What does this
mean? Consider the case of the quantum state H#. We know that
the probability of finding the white tile is 1/2. At this point, the
tile is actually white! Now, if you asked: «What is the probability
that I will observe a white tile from now on?» Well, if nothing hap-
pens in the meantime (i.e., if no other operation intervenes), the
tile will definitely be white! This is just a way of saying that phys-
ical properties are stable. The state must therefore change from a
H# tile to a # tile. That is all: perhaps talking about collapse is a bit
melodramatic.

At this point, one might ask: «Can I only observe the color of a tile? Or are
there other measurements I can make?» Can one measure, for example, mass,
energy, the fluffiness! In particular, in quantum mechanics, there are some odd
properties: like that of a black-and-white tile that can be oriented to the right
or to the left (remember, for single-color tiles orientation does not matter). If
a tile is white, can we observe its orientation? Of course! We can observe the
property of being H# or G#; these will manifest with a probability equal to those
in Fig. 2.6! See the next QM leaflet.

We have learned something very interesting. We can measure the property
of color or the property of orientation. An interesting game could be this. Let’s
prepare a white tile #, and then perform a series of sequential measurements.
For example, we first measure the orientation, then the color, and then the ori-
entation again. What will happen? Well, with a probability of 1/2, the tile will
be oriented to the left G#, and with the same probability to the right H#. Sup-
pose we obtain a G# tile. If we now measure the color, we know we can obtain
with the same probability of 1/2 either a white # or a black  tile (without
any particular orientation). We now well understand what might happen if we
measure the orientation again: we will obtain either G# or H# with a probability
of 1/2. This simple game turns out to be one of the fundamental experiments
of quantum mechanics, as we will see in the note below!
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QM

Measurement in different bases. Here’s an interesting question:
«Is there a physical property corresponding to being G# and an-
other property corresponding to being or H#, so that these proper-
ties are mutually exclusive?»
Two properties are mutually exclusive if, when one is certain (i.e.,
has probability 1), the other is impossible (i.e., has probability 0).
Now, if these properties physically exist, it means we should be
able to design an experiment to detect them! Let’s remember that
physics is an experimental science — it is ultimately concerned
with things that can be observed.
To perform this experiment, we need to build a device that, when
the state is G#, gives the result G# with probability 1, and so on.
Here is how to build such a device: we build an apparatus that
first applies the H operation and then measures the color property.
Let’s see how this works.
If the state is G#, after applying H , it becomes #, and a color mea-
surement will give white with probability 1 (and vice versa for
H# H←→  ).
At this point, all we need to do is change the labels on the appara-
tus’s indicator lights: replace white withG# and black withH#. That’s
it —– the experiment is ready!
In QM, measuring a new physical property is called measuring
in a different basis associated to that property. Notice that with
respect to the orientation basis G#,H# the solid #, behave like
Schrödinger’s kittens! Being a Schrödinger’s kitten is a property
relative to a basis.

Figure 3.1: The Stern-Gerlach experiment.

33



3.1.1 The Stern-Gerlach experiment

QM

The Stern-Gerlach experiment. This experiment uses silver
atoms, which we can imagine behaving like tiny magnets when
subjected to a magnetic field. The experiment begins by heating
silver atoms in a furnace. The thermally agitated atoms exit the
furnace through a small hole, forming a beam, and are directed
towards a non-uniform magnetic field using a device called a col-
limator. After passing through the magnetic field, the silver atoms
strike a screen capable of recording their impact points.
The experiment shows that the silver atoms are deflected either
upward or downward, striking only two narrow regions of the
screen. The Stern-Gerlach apparatus measures a physical prop-
erty of the electron and other particles called spin, along a given
direction: the spin of the atoms in this experiment takes on only
two discrete values — just like the color of the little tiles in QTris.
Suppose we use a Stern-Gerlach apparatus aligned along a z di-
rection. Further, let’s suppose we select only the atoms that are
deflected upward along z. If we pass these atoms through another
Stern-Gerlach apparatus aligned along z, we observe that they are
always deflected upward. This tells us that spin along z is a stable
physical property.
Now, let’s imagine passing these same atoms through a Stern-
Gerlach apparatus aligned along a x direction, perpendicular to z.
We observe that the atoms are now deflected either to the right or
the left. If we select only one of these two branches and pass those
atoms through another Stern-Gerlach apparatus aligned along z,
we once again see that the atoms are deflected either upward or
downward.
This tells us that spin along z and spin along x are incompatible
physical properties — just like the color and orientation of the tiles
in QTris!

The Stern-Gerlach experiment described above is something that can be
played with on a single square of QTris, as you may have realized. Before be-
coming quantum physicists, regular physicists were quite perplexed because
it seemed inconceivable to them that two properties of the silver atoms in the
experiment could not be determined simultaneously. That was until Heisen-
berg came along and established a principle stating that this indeterminacy is
fundamentally at the core of quantum mechanics. Since then, physicists have
become quantum physicists.
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QM

Heisenberg’s Uncertainty Principle. We have seen that qubits
may have different binary properties, for instance, color and L-
R orientation. Both color and orientation come into two mutually
exclusive outcomes: (#, ) for color and (G#,H#) for orientation.
So far so good. Now consider another example, the Knight chess
piece. This one n is at the same time black and left. Compare
with the qubit symbol that is black  , you have no idea whether
it is left or right! You see that the Knight pieces have four pos-
sibilities: n,N, N, nand compare these four states with the
four qubit states #, ,G#,H#! We see that while color and orienta-
tion are compatible properties for the Knights - that is, you can
tell exactly where they are facing and what color they have - for
the qubits having a definite color means not having a definite ori-
entation and vice versa! Indeed, we know that the state, say, G#,
has only 1/2 probability of being white, while - measuring in the
orientation basis - the  has only 1/2 probability of being left.
Quantum physicists say that these two properties —– color and
orientation (for the qubits) —– are incompatible. As a result, if one
property is determined, the other is undetermined. And there you
have it: Heisenberg’s uncertainty principle.

QM

The ground beneath her feet. Very often the general public —
and some physicists — get queasy about all this indeterminacy; it
seems that one is losing the ground beneath one’s feet. In his novel
The Ground beneath her Feet from 1999, Salman Rushdie wrote:

«In an age of great uncertainties it is easy to mis-
take science for banality, to believe that Heisenberg
is merely saying, gee, guys, we just can’t be sure of
anything, it’s all so darn uncertain, but isn’t that, like,
beautiful? Whereas he’s actually telling us the exact
opposite: that if you know what you’re doing you can
pin down the exact quantum of uncertainty in any ex-
periment, any process. To knowledge and mystery we
can now ascribe percentage points. A principle of un-
certainty is also a measure of certainty. It’s not a lament
about shifting sands but a gauge of the solidity of the
ground.»

One simply cannot put it more clearly and better. In the second
part of the book, you will learn how to compute uncertainty exactly.
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Figure 3.2: Effect of the U operation card on single-square tiles. After ap-
plying the U operation card to a white, black or black-and-white tile, you must
decorate it by placing a pink tile underneath. Conversely, if you apply the U
operation card again, you must remove the pink tile. This decoration rule is
also valid when using a U card on any tile of an entangled state, see Fig. 3.5.

3.2 The U card and non-flat probabilities*

So far, we have seen that we can transform our states and change probabilities
from some certainty to absolute uncertainty. For example, on one tile one can
go from # to H#, that is, from (1, 0) to (1/2, 1/2). On entangled states, we can
obtain probabilities like (1/2, 0, 1/2, 0), see Fig. 2.6. The game might become
more interesting if other probabilities might be attained, say (3/4, 1/4). To this
end, we introduce a new card U .

The action of this card on the kittens is readily given in Fig. 3.2. As you can
see, it is very simple, it just decorates the tiles with the pink card U : # U←→ U

and  U←→ U

.
How are these new tiles transformed one into another? We just adopt the

map of single-square operations as in Fig. 2.5. However, now we have different
probabilities for the outcomes #, . The new map with the operations and the
final probabilities is shown in Fig. 3.3. 1

QM

Magic in QM. In quantum mechanics, all the operations described
until now are called Clifford operations. The very interesting thing is
that most of the features of quantum mechanics that allow for im-
portant applications like quantum computing and quantum sens-
ing or communication do rely on operations outside the Clifford
ones. This means that without other resources, no quantum com-
puter or sensor can obtain any quantum advantage compared to a
classical one. The quantum resource missing is colloquially called
magic [OLHL22]. If one has access to a bit of magic then quantum
advantage can be unlocked. And behold, the unitary transforma-
tion U is the one that injects magic in a quantum system!

1The reader who is familiar with all the rules of QM will have understood that X is the bit flip
and that in this new diagram it is the bit flip in the new basis.
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Figure 3.3: Map of single-square operations X,Y, Z,H on the decorated U

tiles. The numbers in the parentheses (x, y) next to the symbols
U

,
U

,
U

,
U

represent the probabilities of obtaining # and  respectively, after performing
a measurement, as explained in Exercise 3.2.2.

Exercise 3.2.1: Clifford operations.

Show that if one only uses the cards I,X, Y, Z,H,CX one can only obtain
flat probabilities, that is, (1, 0, 0, 0) or (1/2, 1/2, 0, 0), (1/4, 1/4, 1/4, 1/4)
and the like.
Solution.— Let us define the following sets of game tiles:

S1 := {##,# , #,  }
S2 := {G##,G# ,H##,H# }
S3 := { , , , }

S4 := { H

,
H

,
H

,
H }

That is, we do not consider the U tiles. As shown in figures Fig. 2.5,
Fig. 2.6 and Fig. 3.4, when we act with the I,X, Y, Z,H,CX cards on
such tiles, regardless of which of the operations is applied, the result-
ing states always lie within the S1, S2, S3, S4 sets. Clifford operations —
in QTris I,X, Y, Z,H,CX — possess the property of sending the states
of S1, S2, S3, S4 into states of S1, S2, S3, S4, according to the rules of the
game, while remaining entirely within them. This property is perfectly
encapsulated by the rectangular enclosure in the diagrams, which also
shows that all possible probability distributions are flat.
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Exercise 3.2.2: Measurement.

Consider a game board looking like this at the end of the operations
phase: 

G#
U U

 
U

#
U


Perform the measurement.
Solution.— To perform the measurement, we look at the probabilities for
every square. We have, as probabilities of obtaining white:

G#
U U

 
U

#
U

 −−→

50% 7% 25%

0 75% 1

50% 93% opposite of square 7


Notice that the probability of obtaining white on square n. 7 is 50%.
Once the square n. 7 is determined, the square n. 9 will be the opposite:
it will also come with a probability that is 50%, but it is not independent.
It is perfectly anti-correlated with that of square n. 7.

To perform a measurement on the pink decorated tiles, we roll a d100 and
we follow the probabilities in Fig. 3.3 for the die, as seen in Exercise 3.2.2.

QM

Partial incompatibility. Consider the operation U as in QTris. The
operation U has defined a new pair of properties

U

,
U

. These two
properties are mutually exclusive, of course. Let us call this prop-
erty U−ness. Our question is: «Is U−ness compatible or not with,
say, color?» We know that, for instance, orientation is incompatible
with color. What about U−ness? Let us see.
Let us pick a state with definite U−ness, say

U

. We know that
upon measurement, it will return a probability 1/4 of being #. As
we can see, determining U−ness still implies some uncertainty on
color. However, this time the uncertainty is less, as it is much more
likely for the system to be black (3/4) than to be white (1/4). In the
case of the state

U

(that we call U−left) instead, the probability of
white is 93/100, see Fig. 3.3. This means that

U

is almost compati-
ble with being white, but not quite. In QM we can also have partial
incompatibility. Partial incompatibility is at the root of quantum
non-locality [AH25].
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3.3 Entanglement and magic together*

In this section, we show the rules about how CX acts together with the H and
U cards. As we know, the CX card creates entanglement when acting on the
{G##,G# ,H##,H# } tiles, introducing in QTris new states { , , , }.
The natural question that arises is: «As we do for the other tiles of the game,
can we apply the H and U cards to the states obtained after playing CX?» The
answer is, yes!

Let us take a look at Fig. 3.4. We have: { , , , } H−→ { H

,
H

,
H

,
H }. First, we observe that the H card acts on the first and the second

qubit of the entangled states in the same way, up to an unobservable global
phase. That is,

1 2
H1−−→ H

1 2
H2−−→ H

1 2
H1−−→ H

1 2
H2−−→ H

1 2
H1−−→ H

1 2
H2−−→ H

1 2
H1−−→ H

1 2
H2−−→ H

where 1 denotes the first qubit and 2 denotes the second qubit, namely, the
square occupied by the first and the second tile. In both cases, the resulting
states have probability (1/4, 1/4, 1/4, 1/4) of being {##,# , #,  }. That
is, by playing the H card, the probabilities remain flat, but now each state
has identical probability. Second, we observe that the X,Y, Z cards act on the
{ H

,
H

,
H

,
H } tiles almost the same way as they act on the entangled

states without applying H . The only difference is that we can use both the X
card and the Z card to obtain a certain state, since one operation acts on the
first qubit and the other on the second qubit. For example:

H

1 2
Z1−−→ H H

1 2
X2−−→ H

H

1 2
X1−−→ H H

1 2
Z2−−→ H

During the game, it is not necessary to specify on which qubit we apply the X
and Z cards: just be aware that both can be used.

The U card acts on entangled states { , , , } in a manner en-
tirely analogous to the H card. The key difference is that, as with the single-
square states decorated with U , it introduces new probabilities such that the re-
sulting decorated states { U

,
U

,
U

,
U }, while preserving all the prop-

erties we have analyzed, exhibit a non-flat probability distribution of being
{##,# , #,  }. Such probability distribution is shown in Fig. 3.5.
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Figure 3.4: Map of all the operations allowed by using entangled states
together with H and the corresponding probabilities for the outcomes
{##,# , #,  }.
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Figure 3.5: Map of all the operations allowed by using entangled states
together with U and the corresponding probabilities for the outcomes
{##,# , #,  }.
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3.3.1 Advanced measurement

Measurement of the game grid.
Starting from square n. 1, and up to square n. 9, check the type of tile
present on the square.

• If the tile on the square is a triangular tile decorated with a red
tile, roll a d100 die.

1. If the result is between 1 and 25, replace the previous tiles
with a ##. If the result is between 76 and 100, replace the
previous tiles with a   .

2. If the result is between 26 and 50, replace the previous tiles
with a # . If the result is between 51 and 75, replace the
previous tiles with a  #.

• If the tile on the square is a triangular tile decorated with a pink
tile, we measure the entangled state as follows.

If a correlated pair is measured, that is,
U

or
U

, roll a d100
die.

1. If the result is between 1 and 12, replace the previous tiles
with a ##. If the result is between 89 and 100, replace the
previous tiles with a   .

2. If the result is between 13 and 50, replace the previous tiles
with a # . If the result is between 51 and 88, replace the
previous tiles with a  #.

If an anti-correlated pair is measured, that is,
U

or
U

, roll a
d100 die.

1. If the result is between 1 and 38, replace the previous tiles
with a ##. If the result is between 63 and 100, replace the
previous tiles with a   .

2. If the result is between 39 and 50, replace the previous tiles
with a # . If the result is between 51 and 62, replace the
previous tiles with a  #.
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Figure 3.6: Mixed states. Four examples of mixed states. Both and are
completely mixed states and do not change under any card. They also give the
same probabilities (1/2, 1/2). The state is not completely mixed and gives
probabilities (3/4, 1/4). It has limited ways of transforming with the cards. The
state is mixed with probabilities (1/4, 3/4).

3.4 Mixed states*

In quantum mechanics, in many realistic scenarios — such as systems with
incomplete information, statistical ensembles, or interactions with an environ-
ment — a system cannot be described by pure states, aka kittens. In QTris, for
example, performing a measurement results in a statistical mixture of states
#, , which we obtain with probability 1/2. In such circumstances, the system
is described by the so-called mixed states, which we introduce in this section.
Let us introduce a notation for mixed states. For example, if we place on one
square a# tile together with a tile, we say that this is the state with probabil-
ity 1/2 of being either#, , and we denote it with . If we place on one square
one tile# and three tiles , this is the state of probabilities (1/4, 3/4) for (#, ),
while if we place three tiles # and one tile  , this is the state of probabilities
(3/4, 1/4); we denote them, respectively, with , . To construct a mixed state,
in general, one must place more than one tile on a single square, and which tiles
are placed and how many of each determine the probability (x, y) of the mixed
state being (#, ). Fig. 3.6 shows several examples of mixed states. Some
mixed states have uniform probabilities, like the states , in Fig. 3.6: they
are called completely mixed states.

3.4.1 Mixed states vs kittens

In QTris, we know that the states G#,H# give probabilities (1/2, 1/2) of obtain-
ing (#, ). So far so good. We have also found that the state , with two
tiles on one square, yields # or  with equal probabilities (1/2, 1/2). So one
could say: «What is the big deal about these kittens G#,H#? They just represent
even probabilities for #, ». As we have mentioned before, there is a huge
difference between mixed states, that represent just probabilities for some out-
comes, and pure states, the so-called kittens, in quantum mechanics. The rules
of QTris show us that kittens have, in addition to providing us with probabili-
ties, many other properties. We now want to explain what is this difference in
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Figure 3.7: Superpositions vs mixed states. The state on the left is pure, that is,
it is a kitten. There is a deterministic way of transforming it in any other pure
state. On the right hand side, there is a (completely) mixed state, and there is
not a deterministic way of turning it in a state giving the desired probabilities.

detail. Those of you who have read some popular science books in quantum
mechanics, will understand that we are talking about the difference between
mixtures and quantum superpositions, see Fig. 3.7.

Let us then see what is the difference between, say, the pure state G# and the
mixed state . They both return the same probability 1/2 of obtaining either
# or  . However, they behave very differently when playing the operation
cards. If we play the H card onG#, we obtain# and we have a 100% probability
of getting # upon measurement. Similarly, by playing Z first and then H we
obtain  with 100% probability. If we play the H card on the mixed state , we
have # H−→ G# on the first tile, and  H−→ H# on the second tile. The new state
on the square is . Now, what probabilities will these tiles return? The tile G#
comes with probability 1/2 and returns probability 1/2 for both #, , and the
same holds for H#. So in the end, we get a probability 1/2 for #, , exactly as in
the initial state. We then see that the card H is completely useless on the mixed
state , but it has a fundamental function for the state G#.

Another example is the following: the states
U

,
U

have probabilities (1/4,
3/4) and (3/4, 1/4) of begin (#, ), but they are pure, while the states and

have probabilities (1/4, 3/4) and (3/4, 1/4), and they are mixed (not com-
pletely).
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Exercise 3.4.1: Completely mixed states are useless.

Show that no card is useful on the completely mixed state . Similarly,
show that this is also true for the mixed state .
Solution.— We show the action of each game card on the , states and
the probability of the resulting states.

X−→ p( ) = (1/2, 1/2)
Y−→ p( ) = (1/2, 1/2)
Z−→ p( ) = (1/2, 1/2)
H−→ p( ) = (1/2, 1/2)
X−→ p( ) = (1/2, 1/2)
Y−→ p( ) = (1/2, 1/2)
Z−→ p( ) = (1/2, 1/2)
H−→ p( ) = (1/2, 1/2)

Exercise 3.4.2: Not completely mixed states have some use.

Consider the state with three tiles  and one tile # on one square, that
is, . Show what happens if one uses the card X on it.
Solution.— We start with the state of probabilities (1/4, 3/4). By using
X , all the three  flip as  X−→ #, while the one # flips as # X−→  , thus
resulting in the mixed state with three# and one , with probabilities
(3/4, 1/4). As you can see, not completely mixed states can be partially
manipulated, but not into something in which the probabilities become
certainties.

QM

So, what are Schrödinger’s kittens? Recall our previous QM
leaflet called Superposition at page 21. We have seen that
Schrödinger’s kittensG#,H# have the property of not having a well-
defined color until measured, after which the color is established
with a probability of 1/2. However, there exist unitary opera-
tions that take them to the state with a chosen color with certainty.
Schrödinger’s kittens thus have this dual nature: if one observes
them, they are white or black at 50%, but there is a way to make
them definitely white or black! Quantum physicists say that this
kind of property is that of a coherent superposition, but these are just
fancy words to say the same thing we have explained in terms of
the H and Z operations.
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Figure 3.8: Two different mixed states. States and have the same proba-
bility (1/4, 3/4) of being (#, ), but they are very different.

3.4.2 Mixed states vs mixed states

We have seen that the mixed state has probability (1/4, 3/4) of being (#, ).
The mixed state , consisting of one  tile and one H# tile, also has probability
(1/4, 3/4) of being (#, ). By now, we are familiar with quantum mechan-
ics, and we know that these two states, shown in Fig. 3.8, cannot simply be
identical. A detailed discussion of all the differences between mixed states is
deferred to the treatment in [DeS25]. However, we can already introduce some
exercises.

Exercise 3.4.3: Measuring mixed states in a different basis.**

Measure the two mixed states and in the {G#,H#} basis and prove
that one obtains different probability outcomes.
Solution.— Let us start from the mixed state . The tile  has probabil-
ity 1/2 of being either G# or H#. The tile H# has probability 1. Then the
probability of the mixed state of being (G#,H#) is (1/4, 3/4).
Now, let us consider the mixed state . The tile # has probability 1/2 of
being either G# or H#. Each of the three tiles  also has probability 1/2 of
being G# or H#. Then the probability of the mixed state of being (G#,H#)
is (1/2, 1/2).
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Exercise 3.4.4: Mixing with kittens is better.**

Show that the state can be manipulated in a way to obtain better win-
ning probabilities for the white than using .
Solution.— As we have seen, from we can obtain the state giving a
probability for the white of 3/4. Now, let us start with and let us see if
we can beat it. If we apply U , we obtain with both tiles decorated by
the pink U tile. So far so good. Now apply the operation X . The tile

U

will flip into
U

, while the tile
U

stays put. So we have probability 1/2 of
having

U

with the white winning with probability 3/4, and probability
1/2 of having

U

with probability for the white of 93/100 resulting in
1/2(0.75 + 0.93) = 0.84, which is way better than 3/4!

3.4.3 Measurement and mixed states

At this point, the attentive player may have noticed that, after a measurement,
one has just several outcomes of #, with certain probabilities on every tile,
that is, a mixed state on every tile! Measurement then produces mixed states
(unless one is in one of the certainty states#, to start with). We can play with
this by adding a rule to make mixed states part of the game of QTris. The new
rule of QTris to simulate noise in the game is the following.

After every turn, one random tile is measured. One of the players rolls a
d10 die, and with the outcome of 1 − 9, the corresponding tile gets measured.
With an outcome of 10, nothing happens. If the tile has a well-determined
color #, , they stay quite the same. However, if the tile is one of the states H#
or G#, we know that upon measurement we obtain one of the #, with 50% of
probability. In this case, as we have seen, we place on that tile both the tiles#, 
orG#,H# to denote the completely mixed state. Similarly, if there were decorated
states like the kittens

U

, we put the appropriate number of #, for the mixed
state of the corresponding probabilities.
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Exercise 3.4.5: Playing with mixed states in QTris.*

In this game variant, we start with a more complicated preparation and
we use measurement as part of the operations the players can perform.
The players start with four (4) cards each and play two (2) cards each
per turn, then perform a measurement and draw two (2) cards from the
deck. To perform the measurement, the players roll a d10 and upon the
outcome, the corresponding square gets measured, resulting often in a
mixed state. On a outcome of 10, no square gets measured at all. In this
game we play a total of four (4) turns.
Consider a game board looking like this at the end of the preparation
phase: 

G#
U U

 
H

#


Player 1 plays as White and Player 2 plays as Black.
Player 1 has cards: I,X,H,U . Player 2 has cards: Y,Z,CX , U .
Solution.— The operations phase starts.

1. Turn 1. Player 1 plays X on qubit n. 4:  X−→ # and H on qubit n.
5: H H−→ . The turn ends. Player 1 rolls a d10: 1 . On qubit

n. 1, we have G# −−→ . Player 1 draws Z,H .

2. Turn 2. Player 2 plays Y on qubit n. 6: # Y−→  and CX on qubit n.

7: CX−−→ G# . The turn ends. Player 2 rolls a d10: 4 . On qubit

n. 4, we have # −−→ #. Player 2 draws I,X .

3. Turn 3. Player 1 plays H on qubit n. 6:  H−→ H# and U on qubit
n. 7: G# U−→ U

. The turn ends. Player 1 rolls a d10: 10 . Nothing
happens.

4. Turn 4. Player 2 plays I and Z on qubit n. 7:
U Z−→ U

. The turn

ends. Player 2 rolls a d10: 3 . On qubit n. 3, we have
U −−→ .

At the end of the operations phase, the game board looks like this, with
probability of obtaining white:

U

# H#
U

 

 −−→

50% 7% 25%

1 50% 50%

93% 50% 0


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QM

Non-unitary evolutions and mixed states. One important ele-
ment of QM is that evolution is not always unitary, so it does not
necessarily resembles one of the operations the players can per-
form and that have been described by the cards so far. In the
context of quantum computation, these non-unitary operations
are sometimes referred to as noisy operations. Non-unitary (i.e.,
noisy) operations do not keep pure kittens pure but make them
mixed. We have seen that measurement is one such noisy oper-
ation. There are more noisy operations other than measurement
and they are described by an elegant formalism that will be ex-
plained in the second part of the book.

3.5 Statistics in QTris*

As we have seen, at the core of QTris (and QM) there is the fact that after all the
operations have been performed, there are probabilities of obtaining #, on
each square. For example, from Exercise 3.2.2, we see that the following game
grid will feature these probabilities for the white tile:


G#

U U

 
U

#
U

 −−→

50% 7% 25%

0 75% 1

50% 93% opposite of square 7


Then, by rolling the dice, we have a possible outcome, say

#  #

  #

 # #


resulting in a score 1− 0 for the white.

What would happen if we repeated the measurement many times starting
from the state after the operations? The laws of probability tell us that if you
repeat it many times, the statistics of the results will be very close to that of the
probabilities! This means that on average half of the times the outcome of the
first square will be white and half of the time black, while on the second square
the white will appear only a fraction 7/100 of the times. You can play and roll
the dices many times and keep track of the results and check. What about the
scores? Well, the average score is not the one given by the average result of the
table. Rather, one has to score for every outcome and only after average all the
scores. Try! A more agile way of doing all this is to put it in a computer, or, to
play with the QTris app that is coming out soon!
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3.6 The third kitten (|i⟩ basis)*

In QM, a basis is a set of states in which you choose to describe or measure
your system. In QTris, as we know, the basis in which the system is measured
after performing all operations is the one defined by the game tiles {#, }. We
introduce a new basis, consisting of tiles { H#,

H# }: they describe the properties up
or down (U-D orientation), which are mutually exclusive. Notice that the basis
{#, } is left unchanged by the operation Z, while X and Y move within the
basis; the basis {G#,H#} is left unchanged by the operation X , and one uses Z
and Y to move within the basis; to move between the two bases, we play an
H card. The new basis { H#,

H# } is the one left unchanged by the operation Y . To
transform H# into

H#

, and vice versa, we either apply the X card or the Y card.
The new S card acts as a change between bases. The complete action of the
new game components together with those already present in QTris is shown
in Fig. 3.9. It is possible to play the extended advanced variant using the new
cards and the new tiles.

Card S Expansion

I 5

X 10

Y 5

Z 10

H 12

CX 10

U 9

S 7

The use of the U and CX cards on the new tiles is explored in [DeS25].
Therefore, to play this version, it is sufficient to follow the schemes illustrated
in figures Fig. 3.9 for one qubit, and Fig. 3.4 and Fig. 3.5 for two qubits. To
perform a measurement, see Sec. 2.3.3 for the usual tiles, and roll a d100 for the
new tiles: if the result is between 1 and 50, transform states H#,

H#

into #; if the
result is between 51 and 100, transform states H#,

H#

into  .
Finally, let us make an observation. If we have a state with property white

or black, it will have property left with 50% probability, and property right with
50% probability. It will also have property up with 50% probability, and prop-
erty down with 50% probability. That is, the three bases {#, }, {G#,H#}, { H#,

H# }
are maximally incompatible: a state in one basis looks completely random when
measured in either of the two. The interesting point is that for single-qubit
systems, or single squares in QTris, the maximum number of maximally in-
compatible bases is exactly three. Any attempt of producing a fourth basis
inevitably produces an overlap with one of the three.
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Figure 3.9: Octahedral map of single-square operations X,Y, Z,H, S and of
measurement probabilities. The numbers in the parentheses (x, y) next to the
symbols #, ,G#,H#, H#,

H#

represent the probabilities of obtaining # and  re-
spectively after performing a measurement.
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3.7 Game variant: Eve*

In this variant of the game, there are three players: Alice, Bob and Eve. The
game is cooperative, as Alice and Bob try to make as many qtris as possible
together, while Eve tries to hinder their efforts. The game consists in several
sets and it ends as soon as one of the two parties (Alice and Bob vs. Eve) makes
three points.

Game Phases Summary [Eve Variant]

1. Preparation phase

(a) Fill the entire game grid with valid states.
(b) Distribute four (4) cards to each player (Alice, Bob, and Eve).
(c) Determine the order of play (dice roll). The playing order

must be Alice-Eve-Bob.
(d) Mulligan: each player draws n−1 cards, where n is the num-

ber of discarded cards.

2. Operations phase

• Players perform, respecting the previously established play-
ing order, a total of five (5) alternating game turns.
(a) Structure of each game turn for Alice and Bob:

i. Draw one (1) card from the operations card deck.
ii. Play one (1) operations card from the hand.

(b) Structure of each game turn for Eve:
i. Draw two (2) cards from the operations card deck.

ii. Play two (2) operations cards from the hand, or, if
not already done in the current game, discard two
cards from the hand and perform the measurement
of a state on the grid in the preferred game basis.

3. Measurement phase

• Perform the measurement procedure of the game grid as re-
ported in the box in Sec. 2.3.3 or Sec. 3.3.1.

4. Scoring phase

• Alice and Bob receive as many points as the qtris they have
made minus one. Example: Alice and Bob end the game with
three (3) qtris in their favor. They will receive, in this case,
two (2) points.

• Eve receives one (1) point only if Alice and Bob have con-
cluded the game with fewer than two (2) qtris.
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3.8 And now?

Congratulations! You’ve reached the end of the QTris rulebook. Now you can
play and have fun.

Those who have understood the rules, played the game, and read the quan-
tum mechanics leaflets, will have gained quite a good understanding of how
this physical theory works. Those who have only played will still have learned
quite a bit about quantum mechanics –— even without realizing it! Many pop-
ular science books on quantum mechanics are sometimes very confusing, but
the excellent book by Terry Rudolph [Rud17] is very insightful. QTris players
will find it very interesting and attuned with the QTris game.

Finally, those who have read and studied the second part of this book with
the additional chapters on quantum mechanics can truly say they know the
basics of quantum mechanics — at a level that may even be useful for future
university studies.

Hopefully some of you will feel the urge to deepen their knowledge. The
following chapters provide a rigorous and precise introduction to quantum
mechanics, where the reader will recognize that playing QTris is essentially
performing quantum calculations. If you want to solve more QTris problems
and see the equivalent calculations in quantum mechanics, look on the arXiv
for the paper called Problems in QTris [DeS25].

QM

QTris and quantum mechanics. We have reached the end of this
journey (for now). We have seen many examples and quantum
experiments that can be played in QTris. Moreover, every QTris
game corresponds to a quantum mechanics experiment that we
can conduct in a laboratory!
At this point, a question arises. Does everything that can be done in
quantum mechanics have a counterpart in QTris? The answer is,
without a doubt, yes! However, the richness of quantum mechan-
ics requires many more states and cards to efficiently represent
other states, along with new probability tables.
The wonderful thing is that anyone can learn to create new tiles,
cards, and probability tables to perform new quantum experi-
ments. To learn how to do all this, an interested player has two
options: take a course in quantum information mechanics or get
their hands on the new game Escape from the black hole [AH25]!

The chapters with the mathematical formalism of quantum mechanics are
removed in this online version and are available in the full book.
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